Event Sourcing as
the Foundation of

Traced

DDD Europe 2020

Thomas Bogh Fangel @tbfangel

@tbfangel

Me

Thomas Bagh Fangel

YW @tbfangel

Architect at Lunar since 2016
Distributed systems since 2004
Java, Scala, Typescript, Go

Event Sourcing for about a year

e Context
o Lunar and a bit of history
e Building a bank from scratch
o Tech vision
e Event Sourcing
o Why & How
o Patterns
o Challenges & Learnings

Lunar at
aglance

7w

Z 002 224,

Vetive

al

Ses

o947

rLTEE Joclay

76705 g

150427 47 feost)

*O, 2%

rt] T

Founded as Lunar Way 2015

o947

Smartphone only challenger bank

174 Tooky

isti 76705 g
Originally built on top of existing bank

150427 47 (et)

Live 2016
Best in class UX and support
Present in DK, NO and SE

» 7
- ZO02 224,
Shares ot
o %
By rmore Sar

@ Market s coen

758 msrker olats o be PP e by i to 75
IPUTHILES fostnry co/or s/t NS consecterr
SRS N S S o

100+
Employees

25%
Engineers

Facts

150k
Users

1M+
TX pr month

~100
u services

3
K8S clusters

ar
IoRy"

anh

Native iOS and
Android app’s

Backend

° e n
*
A rniLs
n

PostgreSQL

Bank Integration

NemlD Integration

P o

___ugg
wwamazon

[
R# webservices

DK Bank

NemlID

a' docker

LUNAR’ r\ DK
A RAILS Clearing

DK
|dentity

Core

SE/NO
|dentity

LUNAR Partner
A
Features
Partner
amazon B

webservices
@tbfangel

The good The bad

Autonomy e Messaging
Speed e Consistency
Maintainability e Traceability
Messaging

@tbfangel

Building a
scratch

What does it mean to be a bank?

Card N National
Processor Clearing
Pay with Keep money Transfer

card safe money

@tbfangel

Tech Vision

Trustworthy Secure

Correct

Tech Vision

Traceability at all levels

nothing should happen without us knowing
and our system should never be in a state
we cannot explain

Distributed Tracing

-
Traceability

gggggggg

func DoSomeBusiness(s *State) (Result, error)

{
if s.InImpossibleState() {

//this should never happen - what to do?
panic(“current state is impossible”)

Y
//happy cases below

}

@tbfangel

"this should never happen"

Repositories (6]
Code [594K+]
Commits [360K+
Issues (9K]
Packages 0
Marketplace 0

Showing 594,592 available code results ®

Search

Sort: Best match ~

Production

The place where the
iImpossible happens

Traceability

Explain the
Impossible

“Something really awful
happened to your money
- we readlly don't know what
happened, but we're trying to
figure it out”

‘Something really awful
happened to your money - but
we know exactly where the
money is and we will fix it’

@tbfangel

AILILALAN
AIILA |=

Event n[JANUH

Sourcing @I |n:=3=

W1 MY

Shift of Focus

From state...
..Lo events

@tbfangel

Event Sourcing Components

Aggregate root

Event stream

Projection

+

Business logic
(pure functions)

Event stream

Storage

=8 Projection

Handler

$3003J0 9pIS

Implementation

e Apogee: ES & CQRS' library in Go
(Open Source in 2020)

e Postgres as event storage

e In-memory views for AR

e SQL backed views - later

* CQRS: Command Query
@tbfangel Responsibility Segregation

/[TodoList defines the state of the todo list aggregate root
type TodoList struct {
//CreatedAt contains the timestamp of when the list was created
CreatedAt *time.Time
//ltems is a map of the items on the list to their state
ltems map[types.ltemID]itemstate

}

//ltemChecked is the event published when an item is checked
type ItemChecked struct {

HappenedAt time.Time

ID types.ltemID

}

func (t *TodoList) ApplyltemChecked(event ltemChecked) {
s := t.ltems[event.ID]
s.Checked = true
t.ltems[event.ID] = s

}

func (t *TodoList) HandleCheckltem(cmd Checkltem, uow aggregateroot.UnitOf\Work) {
if cmd.ID.IsEmpty() {

uow.Fail(FailureCode_InvalidCommand, "empty item id")
}
state, ok := t.ltems[cmd.ID]
if lok {
uow.Fail(FailureCode_ItemNotFound, "item with id %s not found", cmd.ID)
}
if state.Checked {
//nothing to do
return
}
uow.Publish(ltemChecked{
ID: cmd.ID,
HappenedAt: cmd.Time,

1)
}

Single Crucial Property

Guaranteed
Event
Handling

Implementation

e Roll-your-own?
e Outbox pattern?
e Debezium with Kafka

@tbfangel

@tbfangel

Event stream

Storage

Debezium & Kafka

$ 9

Handler

$}00}J0 OpIS

Patterns

Public APIs

async j sync National

Clearing

Bank Core Adapter

@tbfangel

@tbfangel

Externadl Event Streams

Public API

Same guadrantees and properties
as internal event stream

Derived from internal event stream
Essentially a handler writing to an
event stream

May keep track of source events

External Event Streams

Handler External Event

stream A

Internal
Event stream

External Event
streamB

Projection

Storage

@tbfangel

Distributed flows

e Distributed transactions

e Represented as aggregate roots
(state machines)

e State determines handler action

e Side effects in handlers

e Public event streams as API

@tbfangel

Bank Core DK Adapter

TRANSFER CLEARING

TRANSFER
1.
Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitiated
FundsReserved
g TRANSFER
Handler Aggregate

@tbfangel

Bank Core DK Adapter

TRANSFER

TRANSFER CLEARING

Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitiated 2. Initiated
FundsReserved
g TRANSFER
Handler Aggregate

@tbfangel

Bank Core 3 DK Adapter

TRANSFER TRANSFER SaERINE

Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitiated 2. Initiated
FundsReserved
g TRANSFER
Handler Aggregate

@tbfangel

Bank Core 4. DK Adapter

>y (9
By £

TRANSFER CLEARING

TRANSFER
Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitiated 2. Initiated 4. Initiated
FundsReserved
g TRANSFER
Handler Aggregate

@tbfangel

Bank Core DK Adapter

4, g

TRANSFER CLEARING

TRANSFER
Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitiated 2. Initiated 4. Initiated
FundsReserved
5. TimedOut
g TRANSFER
Handler Aggregate

@tbfangel

Bank Core DK Adapter

4, ¢

TRANSFER CLEARING

TRANSFER
Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitiated 2. Initiated 4. Initiated
FundsReserved
5. TimedOut
g IRANSHER 6. Succeeded
Handler Aggregate

@tbfangel

Bank Core DK Adapter

N &
(9 (C9
o, Mo ;

TRANSFER CLEARING

TRANSFER

Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitiated 2. Initiated 4. Initiated
FundsReserved
5. TimedOut
g TRANSFER 6. Succeeded
Handler Aggregate

@tbfangel

Bank Core DK Adapter

TRANSFER TRANSFER CLEARING

o, Mo, z

Request Account Bank Transfer Adapter Transfer
ACCOUNT
1. Transferlnitioted 2. Initiated 4. Initiated
FundsReserved
8. Succeeded 5. TimedOut
g TRANSFER 6. Succeeded

Handler Aggregate
@tbfangel

Bank Core DK Adapter

TRANSFER

TRANSFER CLEARING

Request Account Bank Transfer ~ Adapter Transfer
ACCOUNT
1. Transferlnitiated 2. Initiated 4. Initiated
FundsReserved

9. TransferCompleted 8.Succeeded 5.TimedOut
ReservationRemoved
TRANSFER TransactionCreated

Handler Aggregate 6. Succeeded

@tbfangel

Bank Core

3.

TRANSFER
2.
o, Mo, '
9.
1.
Request
ACCOUNT
g TRANSFER
Handler Aggregate

@tbfangel

DK Adapter
4.
TRANSFER
7.
Account Bank Transfer

1. Transferlnitioted 2. Initiated

FundsReserved
9. TransferCompleted 8. Succeeded
ReservationRemoved
TransactionCreated

5.+ 6.

CLEARING

Adapter Transfer

4. Initiated

5. TimedOut

6. Succeeded

Key points

e Guaranteed event handling is paramount
e Maximum traceability

@tbfangel

Error handling

e Failures are Ist class domain citizens

e Idempotency’ crucial both internally and
externally

e Only measure against timeouts and
crashes

* ldempotency: system state remains

@tbfangel the same after one or several calls

Tech Vision
Revisited

What about
Correctness...?

e 100% correctness is impossible
e Understand your errors, then fix

e Traceabillity leads to correctness by explaining
errors

e Error correction is just another event

@tbfangel

... and Consistency?

e Ordered event streams
e Empowers consumers
e Eventually is better than maybe

@tbfangel

Challenges
& Learnings

Event sourcingis a perfect
fit with DDD... but

e It's adifferent mind set
e May cause mental overflow
e Leave room for experiments and failures

@tbfangel

Event sourcing delivers on the promise
of traceability... but

e [t's not necessarily mainstream tech
e Guaranteed event handling is challenging

@tbfangel

There's tremendous power in
immutable event streams and CQRS...

e Butimmutable data is also a challenge:
- GDPR
- Migrations
- Compensating event

@tbfangel

Thank You!

https://tech.lunarway.com/blog/

https://techlunarway.com/talks/

https://techJunarway.com/opensource/

https://tech.lunarway.com/blog/
https://tech.lunarway.com/talks/
https://tech.lunarway.com/opensource/

