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Architect at Lunar since 2016

Distributed systems since 2004

Java, Scala, Typescript, Go

Event Sourcing for about a year



@tbfangel

Agenda● Context
○ Lunar and a bit of history

● Building a bank from scratch
○ Tech vision

● Event Sourcing
○ Why & How
○ Patterns
○ Challenges & LearningsAgenda
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Lunar at
a glance
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● Founded as Lunar Way 2015

● Smartphone only challenger bank

● Originally built on top of existing bank

● Live 2016

● Best in class UX and support

● Present in DK, NO and SE
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100+
Employees

25%
Engineers

1M+
Tx pr month

~100
μ services

150k
Users

3
K8S clusters

Facts



@tbfangel



@tbfangel

DK 
Clearing

Lunar 
Feature A

Lunar 
Feature C

Lunar 
Feature B

UserAuth

Features

Feature

Product

Signup DK 
Identity

SE/NO 
Identity

Partner
A

Partner
B

Transfer

Core

Adapter

Adapter



@tbfangel

The bad

● Messaging 
● Consistency
● Traceability

The good

● Autonomy
● Speed
● Maintainability
● Messaging
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Building a 
bank from 
scratch
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Card
Processor

National
Clearing

What does it mean to be a bank?

Pay with 
card

Transfer 
money

Keep money 
safe
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Trustworthy Secure

Correct

Tech Vision
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Traceability at all levels

nothing should happen without us knowing 
and our system should never be in a state 

we cannot explain

Tech Vision
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≠
Traceability

Distributed Tracing
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func DoSomeBusiness(s *State) (Result, error) 
{

if s.InImpossibleState() {
//this should never happen - what to do?
panic(“current state is impossible”)

}
//happy cases below

}
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Production
=

The place where the 
impossible happens 
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Traceability
=

Explain the 
impossible 
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“Something really awful 
happened to your money 

- we really don’t know what 
happened, but we’re trying to 

figure it out”
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“Something really awful 
happened to your money - but 

we know exactly where the 
money is and we will fix it”
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Event 
Sourcing
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Shift of Focus

From state…
...to events
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Event Sourcing Components

Storage

Event stream

Projection

Side effects

Handler

Event stream

Projection

+

+
Business logic

(pure functions)

Aggregate root
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Implementation
● Apogee: ES & CQRS* library in Go 

(Open Source in 2020)
● Postgres as event storage
● In-memory views for AR
● SQL backed views - later

* CQRS: Command Query 
Responsibility Segregation
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//TodoList defines the state of the todo list aggregate root
type TodoList struct {
  //CreatedAt contains the timestamp of when the list was created
  CreatedAt *time.Time
  //Items is a map of the items on the list to their state
  Items         map[types.ItemID]itemstate
}

//ItemChecked is the event published when an item is checked
type ItemChecked struct {
  HappenedAt time.Time
  ID                 types.ItemID
}

func (t *TodoList) ApplyItemChecked(event ItemChecked) {
  s := t.Items[event.ID]
  s.Checked = true
  t.Items[event.ID] = s
}
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func (t *TodoList) HandleCheckItem(cmd CheckItem, uow aggregateroot.UnitOfWork) {
  if cmd.ID.IsEmpty() {
     uow.Fail(FailureCode_InvalidCommand, "empty item id")
  }
  state, ok := t.Items[cmd.ID]
  if !ok {
     uow.Fail(FailureCode_ItemNotFound, "item with id %s not found", cmd.ID)
  }
  if state.Checked {
     //nothing to do
     return
  }
  uow.Publish(ItemChecked{
     ID: cmd.ID,
     HappenedAt: cmd.Time,
  })
}
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Single Crucial Property

Guaranteed
Event

Handling
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Implementation
● Roll-your-own?
● Outbox pattern?
● Debezium with Kafka
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Debezium & Kafka

Storage

Event stream

Side effects

Handler
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Patterns
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Adapter National
Clearing

Public APIs

Bank Core
async sync
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External Event Streams
● Public API
● Same guarantees and properties 

as internal event stream
● Derived from internal event stream
● Essentially a handler writing to an 

event stream 
● May keep track of source events
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External Event Streams

Storage

Internal
Event stream

Projection

Handler External Event 
stream A

External Event 
stream B
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Distributed flows
● Distributed transactions
● Represented as aggregate roots 

(state machines)
● State determines handler action
● Side effects in handlers
● Public event streams as API
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Key points
● Guaranteed event handling is paramount
● Maximum traceability 



@tbfangel

Error handling
● Failures are 1st class domain citizens
● Idempotency* crucial both internally and 

externally 
● Only measure against timeouts and 

crashes

* Idempotency: system state remains 
the same after one or several calls



@tbfangel

Tech Vision
Revisited
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What about 
Correctness...?
● 100% correctness is impossible
● Understand your errors, then fix
● Traceability leads to correctness by explaining 

errors
● Error correction is just another event
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… and Consistency?
● Ordered event streams
● Empowers consumers 
● Eventually is better than maybe 
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Challenges
& Learnings
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Event sourcing is a perfect 
fit with DDD... but

● It’s a different mind set 
● May cause mental overflow
● Leave room for experiments and failures
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Event sourcing delivers on the promise 
of traceability... but

● It’s not necessarily mainstream tech
● Guaranteed event handling is challenging



@tbfangel

There’s tremendous power in 
immutable event streams and CQRS...

● But immutable data is also a challenge:
- GDPR
- Migrations
- Compensating event
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Thank You!
https://tech.lunarway.com/blog/

https://tech.lunarway.com/talks/

https://tech.lunarway.com/opensource/

https://tech.lunarway.com/blog/
https://tech.lunarway.com/talks/
https://tech.lunarway.com/opensource/



