
DDD Europe 2020
Thomas Bøgh Fangel @tbfangel

Event Sourcing as
the Foundation of
Traceability

@tbfangel

Me
Thomas Bøgh Fangel

 @tbfangel

Architect at Lunar since 2016

Distributed systems since 2004

Java, Scala, Typescript, Go

Event Sourcing for about a year

@tbfangel

Agenda● Context
○ Lunar and a bit of history

● Building a bank from scratch
○ Tech vision

● Event Sourcing
○ Why & How
○ Patterns
○ Challenges & LearningsAgenda

@tbfangel

Lunar at
a glance

@tbfangel

● Founded as Lunar Way 2015

● Smartphone only challenger bank

● Originally built on top of existing bank

● Live 2016

● Best in class UX and support

● Present in DK, NO and SE

@tbfangel

100+
Employees

25%
Engineers

1M+
Tx pr month

~100
μ services

150k
Users

3
K8S clusters

Facts

@tbfangel

@tbfangel

DK
Clearing

Lunar
Feature A

Lunar
Feature C

Lunar
Feature B

UserAuth

Features

Feature

Product

Signup DK
Identity

SE/NO
Identity

Partner
A

Partner
B

Transfer

Core

Adapter

Adapter

@tbfangel

The bad

● Messaging
● Consistency
● Traceability

The good

● Autonomy
● Speed
● Maintainability
● Messaging

@tbfangel

Building a
bank from
scratch

@tbfangel

Card
Processor

National
Clearing

What does it mean to be a bank?

Pay with
card

Transfer
money

Keep money
safe

@tbfangel

Trustworthy Secure

Correct

Tech Vision

@tbfangel

Traceability at all levels

nothing should happen without us knowing
and our system should never be in a state

we cannot explain

Tech Vision

@tbfangel

≠
Traceability

Distributed Tracing

@tbfangel

func DoSomeBusiness(s *State) (Result, error)
{

if s.InImpossibleState() {
//this should never happen - what to do?
panic(“current state is impossible”)

}
//happy cases below

}

@tbfangel

@tbfangel

Production
=

The place where the
impossible happens

@tbfangel

Traceability
=

Explain the
impossible

@tbfangel

“Something really awful
happened to your money

- we really don’t know what
happened, but we’re trying to

figure it out”

@tbfangel

“Something really awful
happened to your money - but

we know exactly where the
money is and we will fix it”

@tbfangel

Event
Sourcing

@tbfangel

Shift of Focus

From state…
...to events

@tbfangel

Event Sourcing Components

Storage

Event stream

Projection

Side effects

Handler

Event stream

Projection

+

+
Business logic

(pure functions)

Aggregate root

@tbfangel

Implementation
● Apogee: ES & CQRS* library in Go

(Open Source in 2020)
● Postgres as event storage
● In-memory views for AR
● SQL backed views - later

* CQRS: Command Query
Responsibility Segregation

@tbfangel

//TodoList defines the state of the todo list aggregate root
type TodoList struct {
 //CreatedAt contains the timestamp of when the list was created
 CreatedAt *time.Time
 //Items is a map of the items on the list to their state
 Items map[types.ItemID]itemstate
}

//ItemChecked is the event published when an item is checked
type ItemChecked struct {
 HappenedAt time.Time
 ID types.ItemID
}

func (t *TodoList) ApplyItemChecked(event ItemChecked) {
 s := t.Items[event.ID]
 s.Checked = true
 t.Items[event.ID] = s
}

@tbfangel

func (t *TodoList) HandleCheckItem(cmd CheckItem, uow aggregateroot.UnitOfWork) {
 if cmd.ID.IsEmpty() {
 uow.Fail(FailureCode_InvalidCommand, "empty item id")
 }
 state, ok := t.Items[cmd.ID]
 if !ok {
 uow.Fail(FailureCode_ItemNotFound, "item with id %s not found", cmd.ID)
 }
 if state.Checked {
 //nothing to do
 return
 }
 uow.Publish(ItemChecked{
 ID: cmd.ID,
 HappenedAt: cmd.Time,
 })
}

@tbfangel

Single Crucial Property

Guaranteed
Event

Handling

@tbfangel

Implementation
● Roll-your-own?
● Outbox pattern?
● Debezium with Kafka

@tbfangel

Debezium & Kafka

Storage

Event stream

Side effects

Handler

@tbfangel

Patterns

@tbfangel

Adapter National
Clearing

Public APIs

Bank Core
async sync

@tbfangel

External Event Streams
● Public API
● Same guarantees and properties

as internal event stream
● Derived from internal event stream
● Essentially a handler writing to an

event stream
● May keep track of source events

@tbfangel

External Event Streams

Storage

Internal
Event stream

Projection

Handler External Event
stream A

External Event
stream B

@tbfangel

Distributed flows
● Distributed transactions
● Represented as aggregate roots

(state machines)
● State determines handler action
● Side effects in handlers
● Public event streams as API

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

1.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated

2.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated

3.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated 4. Initiated

4.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated 4. Initiated

5. TimedOut

5.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated 4. Initiated

5. TimedOut

6. Succeeded

6.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated 4. Initiated

5. TimedOut

6. Succeeded

7.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated 4. Initiated

8. Succeeded 5. TimedOut

6. Succeeded

8.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated 4. Initiated

9. TransferCompleted
 ReservationRemoved
 TransactionCreated

8. Succeeded 5. TimedOut

6. Succeeded

9.

@tbfangel

TRANSFER

Bank Core

TRANSFER

DK Adapter

CLEARING

ACCOUNT

TRANSFER

Handler Aggregate

Request

9.

1.

2.

3. 4.
5.+ 6.

7.8.

Account Bank Transfer Adapter Transfer

1. TransferInitiated
 FundsReserved

2. Initiated 4. Initiated

9. TransferCompleted
 ReservationRemoved
 TransactionCreated

8. Succeeded 5. TimedOut

6. Succeeded

@tbfangel

Key points
● Guaranteed event handling is paramount
● Maximum traceability

@tbfangel

Error handling
● Failures are 1st class domain citizens
● Idempotency* crucial both internally and

externally
● Only measure against timeouts and

crashes

* Idempotency: system state remains
the same after one or several calls

@tbfangel

Tech Vision
Revisited

@tbfangel

What about
Correctness...?
● 100% correctness is impossible
● Understand your errors, then fix
● Traceability leads to correctness by explaining

errors
● Error correction is just another event

@tbfangel

… and Consistency?
● Ordered event streams
● Empowers consumers
● Eventually is better than maybe

@tbfangel

Challenges
& Learnings

@tbfangel

Event sourcing is a perfect
fit with DDD... but

● It’s a different mind set
● May cause mental overflow
● Leave room for experiments and failures

@tbfangel

Event sourcing delivers on the promise
of traceability... but

● It’s not necessarily mainstream tech
● Guaranteed event handling is challenging

@tbfangel

There’s tremendous power in
immutable event streams and CQRS...

● But immutable data is also a challenge:
- GDPR
- Migrations
- Compensating event

@tbfangel

Thank You!
https://tech.lunarway.com/blog/

https://tech.lunarway.com/talks/

https://tech.lunarway.com/opensource/

https://tech.lunarway.com/blog/
https://tech.lunarway.com/talks/
https://tech.lunarway.com/opensource/

