LUNAR

Event driven architecture &
hyper-growth @Lunar

EventSourcing Live 2021
By Thomas Bogh Fangel & Brian Nielsen

Why event source in Lunar?

Who are Thomas and Brian ?

What is Lunar today ?

In what context do we use Event sourcing in Lunar
and what has it brought us?

Take aways

OOwm»p

“You can't predict the future, but you
can plan for it”
- Lunar Tech

\\ Then Make the

Oct 2021

1 Years Experience in Lunar

6 Years of Fintec experience as Lead Architect in Mobilepay

Brian Nielsen (5.5 mio MAU)

Lead Architect at Lunar
¥ @Briannielsen76

Married to Marianne & together we
have 2 boys Christion and Gustav

17 Years of experience in the Banking domain across
Engineering

Classically trained engineer in: PL/1, Java and C#

7 years experience with DDD and event driven architecture

Thomas Begh Fangel 5 years of experience in Lunar

Senior Software Engineer 15+ years experience in building distributed software systems

y @tbfangel

Married to Anne, father of 3, owner of
a dog and a cat

VISION

YOUR LIFE IN
ONE FINANCIAL
SUPER APP

Make the most of your money when you save
up, spend smarter, grow your business, invest
your money and engage in personalised
banking that matches your lifestyle.

It takes a bank unlike anyone else. A bank that
morphs banking and entertainment for esports
fans. Or empower you to clean plastic from the
ocean every time you swipe your card.

Lunar is this bank, and we are building the first
financial super app to shape the future of
banking in the Nordics. We redefine the most
profitable banking market in world.

@ Home

‘ My Account

ot

12.348,32 kr.

v.e‘on 2021
6000 610.000 kr.
o8

Upcoming expenses

C-<&

From O to 400k users...

400000

LUNAR'

300000

200000 P
4y -
1 . Rn I s
0} L

100000

0
2016-1 2017-1 2018-1 2019-1 2020-1 2021-1

Month

Welcome to - The Lunar Tech Stack

The Lunar APP

|ﬁl 10S

Android OS ios

Webpage

=
@W

Gatsby prismic.io

Customer Support &
Backoffice

G

React GraphQL

-

Lunar Core Banking Platform

Node.js RabbitMQ

<>

Protobuf

PostgresQL

(Lunur Infrqstructure\

Amazon EC2 AWS RDS

Lunar Observability

- F

Grafana Jaeger

Prometheus

" O

» « YA
Uyl ML

J

linkerd YAML

Amazon S3 Kubernetes —
NGINX Fluentd

(Lunar Data

Platform
(.’J

O

Looker

Looker

Amazon
Redshift

X
A

Python

—

Lunar organisation

growth over years

400
375
350 (%) Lendify
325 .

300
275
250
225
200
175
150
125
100
75
50
25

2015 2016 2017 2018 2019 2020 2021Q3

17 Squads & 200+ microservices 480+Repos

Observation:

Increasing user base -> more out layer
cases TEAM ﬁé
More Countries / Currencies Hopomag
More complex products: Credit / Loan :

More Channels: App / Web

Geographically distributed squads

= emp—
MATTHEW SKELTON
and MANUEL PAIS
I

Principle suggestion:
Simplify with “Single” responsibility :

Domain and subdomain segregation
Set user focus DISL GR

(Squads may need to span more
domains from the get go)

Multi talented group of people with specific business and domain focus
‘Squads on a mission’

AR Sauad Artemis

4 fundamental topologies £=

Stream-aligned team

Enabling team

Complicated Subsystem team

Platform team

SUCCESS

i ?‘. Topologies

application
to approval)

Automated backoffice flow

https://teamtopologies.com/

Multiple hubs to collaborate on a shared vision
organized around hubs - domain & Squads (inverse Conway)

Lending
Credit engine

Banking Operations

Reporting
Data
Consumer
Banking Operations . : 0 %, 1%
Invest
Business

Cloud and platform

Domain design
Bounded context classification

“Time and resources are
limited. How we spend our
time and apply our resources
when developing software
systems is possibly the most

CONTEXT DISTILLATION

fundamental and difficult S
challenge. Of all the things we Model | :
could be doing, what should we Complexity | s

|

C

do and how much quality and

J . ”
rigour should we invest?” -- SUPPORTING

Low . : =
Business Differentiation

W ntcoding

Nick Tune

https://ntcoding.medium.com/

Domain design

Domain distillation for the entire Lunar domain back in 2020

We want to outsource Classical
Banking components like
Clearing

Treasury

SWIFT

Financial reporting

And we actually value user
journeys for our invest products
high

fxajduog

‘r Generics Supporting

UNAR
Application

Credit Scoring elprisie

Engine

Apollo

UNAR
Customer
ledger

UNAR
Deposit Acc mgt.
(incl. internal acc)

Cleanng

Android)

UNAR'
Automated

" Foreign clearing
Swift

(LuNAR®
Cards business
Access Mgt Mgt procedures Netbanking
Treasury mgt. RBAC AR’
Collectia Warehouse &
i (TUNAR"
Sollections ¥ eneral Ledger Analytics
Al & Accounting Balance mgt.
C
Finance {Gompany)
mgt.(Company)
¢

NEM 1D
signing
Diex Cards

Operations
Documsnt

Dlstnbutlon
5par
Identlly
- UNAR'

UNAR AML & Fraud -
nnanmol Finance reporting LUNAR
Reporting Channel Houston/

Monagemem CEM

Tax repomng

PsD2 Gateway U

UNAR
Partner
ecosystem

UMAR
Notifications &
engagement

(UNAR
Overdraft
handling

Reports

Differentiator

Yes Banking is complex hence the map is very busy - sorry A

Designed to decouple, simplify and promote efficiency
and scalability

Lunar application and cloud architecture

Bizz
User
CS Web AML 'Llj':sas
Portal \ Portal Userdomains \ A Banking domains
%, 0%
12yy v AT
Move money, . . "
User e ount T e EiERS 166[transfer, Backofflge, Customer C.u'stomer due Risk modeling
, 4 o p . onboarding Support, diligence, KYC
Lifecycle Lifecycle lifecycle Lifecycle standing
houston Albot
orders
Security User plans Value add . . A .
P - o e.g. Trading, :\;z;dq mont ﬁw?lf]structure Marketing Fee, revenue, AML, Financial ?nqnce,
tion insurance g invoicing crime reasury

Platform domains

i Car ration i ili i
Payment and accounting CIC CEERIEE Cloud operations platform il CTs) sl Engineering platform Analytics/ data Platform

platform platform integrations

Scale up and Scale out
Focus on boundaries & Language

CAGCEREGATE” | gencratec

Rest API
3
5
LS
N

READ vl

J

1) Build up vocabulary

2) Focus on internal and external language to identify
boundries

3) Focus on your integration events / API’s to help other
squads and increase fast flow of knowledge

Customers Identity EXfeRuAL P
< > < > invoked o 5 (oS

Poucy

Scale up and Scale out
Focus on boundaries & Language

Rest API

<Customers> < Identity >

Absorb and Split

When the teams get % %
too large and clunky...

>0

Add new people to

existing teams Split the teams

learnings

ES was born in Lunar with a primary focus on Audit and because engineers found it fun. In all lecture managing an
account is a classic example of eventsourcing.

Idempotency is important because when we have not transactional boundrie across domains
We have experienced that unique identifiers like transactionID was not unique

question Is the "account” aggregate correctly designed ?
We experienced that as our customers made many payment transactions - generating the aggregate state in mem
became a problem. Snapshotting to the rescure

Issue Side effects was not consistently executed:

ex . Readmodels for seperate queries must be consistently updated together with the domain aggregate: “updating
balance when receiving a payment command”

Guaranteed event handling Observer pattern to the rescue.

Org

Tech

System architecture
Challenge of autonomous squads & microservices

Independent, Decoupled,

but share but cause

Information changes with

consistently guarantees
r=—-=-—=-=-========== r=—-=-—=-=-========== r=—-=-—=-=-==========

Transactional
Boundary

Transactional
Boundary

Transactional
Boundary

Informatio
|

?

System architecture
Event Streams on the Outside

Transactional
Boundary

Transactional
Boundary

External Event
stream

Challenges
e Reconstitution
e Idempotency

System architecture
Side effects

Transactional I Handlers

Boundary .
::

Side effect

—>
Side effect

I

I

1

: Challenges
: e Replay
: e Idempotency

System architecture
Event Sourcing Learnings & Challenges

Use cases

e Short running aggregates: payment sagas, process managers
o lifecycle measured in days

° Long running oggregotes: user, account
o lifecycle measured in months, years

System architecture
Event Sourcing Learnings & Challenges

rvices Search Dashboards Alerts Parsers Files gs
[Automatic (Time charty v| * Queries - | @Language Syntax @Time Chart Widget &
k8s. labels.app=/bank-account/ card.CardReserveFunds fields.attempt=/.+/ | timechart(span=12h, function=percentile(field=fields.account.aggregate.load, as=aggregate_load, percentiles=[50,99,95]))
Results Events
Style Mits:866,481 Speed:067GB/s EPS:144M Completion:100% | Status:Done | BucketSize:12h i3] 3 Save as.

sgregate 10ad 50 @ aggregate los

System architecture
Event Sourcing Learnings & Challenges

Automatic (Time Chart) Queries - [@lLanguage Syntax (il Time Chart Widget

< | ® uasmam | > @
l 1 kBs.labels.app=/bank-account/ card.CardReserveFunds fields.attempt=/.+/ | timechart(function=percentile(field=fields.account.aggregate.load, as=aggregate_load, percentiles=[95,99.9]))

Hits:1576 | Status:Running | Bucket Size : 205

b 4 Save as.

2020-08-28713:07:4000040200
Bucker ize: 205

® sgoregate joad 999 67243

Hola ‘SHIFT" o show unformatied vaies

124

1o

System architecture
Event Sourcing Learnings & Challenges

Learnings

e Expect surprises
e Just-in-time-development is OK
e Prioritize observability

Anatomy of ES service

Command
API

l

—_—N
Upstream
events l

Query API

1

Sumup
Distributed and event driven Architecture considerations

Reconciliation jobs = eventual consistency Across
Domain

Service / job
Idempotency
h e
§ s
Integration g E .g
o event o
< publisher ACL/ &
3 ¢ Create Adapter
x & § Payee cmd
S
I
Guranteed o
\/ event hand BRabbit
Event
consumer
Fersy ek Denormalize
y IntegrationEvent v
gsertCreated Consumer
. ven’
Aggregate (ACL) P —
Store
Store
(. Y, L)
Replay
S Integrations
d g as Events
Error Queues store

Service discoverability

Guaranteed

event delivery
Persist I.E
+ |.E Data

Developer

Jobs

Domains

Reconstitution

Job Manager / Reconstitute Integration Events

Listen to all Integration Events

Integration Events.

RabbitMQ

Make domain expansion easy
Instrument through Backstage.io

Documentation

Documentation available in Lunar

Lunar Catalog

Best practise
Dead-letter

Squads Overview

Service Overview

AR

ome APIS

Lunar API Explorer

Deadletter / error Queue

APl Overview) =
@ Add Job 75
Replay [reconstitute e RS o) [- %

/%
/%
27 %
/%
/%
o compLETED ! 3 37 %
/%
® COMPLE ETED 3/ %

© COMPLETED

© COMPLETED

© COMPLETED

https://backstage.io/

Event sourcing in Lunar
Key take away

“You can’t predict the future, but you
can plan for it”
- Lunar Tech

Then Make the

This is how we have implemented Eventsourcing in Lunar with Event streams.

Eventsourcing alone is one technique among several that fit well into an event driven and

domain driven architecture

In Lunar vi have experienced rapid growth not only in Systems and Technology but just as well in

our organisation and we plan for further growth

Along the way we have learned a lot and done mistakes and hard learnings - But we are certain
the foundation of event sourcing, event and domain driven is the correct path for us

TEAM
|

’}'OPOLOGIES

=2

> wrv—
MATTHEW SKELTON
2nd MANUEL PAIS
|

