
Event
sourcing
after
page 1
How we built a cloud native bank

Event sourcing after page 1
How we built a cloud native bank

KCD Denmark 2023 / Thomas Bøgh Fangel / LUNAR Image rendered
by NightCafé

● Founded 2015
● “Technology company running a bank”
● Live (as Lunar Way) April 2016
● Banking license 2019
● Live as Lunar in Q1 2020
● 750k customers across DK/NO/SE

● Cloud Native from Day 1
● Live on Kubernetes in Q1 2017
● Event sourcing used since 2019
● ~300 application services in K8S prod
● ~100 services using event sourcing

● Joined Lunar in 2016
● Tech lead in squad Orion responsible for

domestic clearing integrations
● Distributed systems since 2004
● Part of the Lunar journey from Rails

monolith to event driven microservices

Reach me at

 @tbfangel

 thomasboeghfangel

Me

How would you
build the core
of a modern
bank?

1. How would you build the core
of a modern bank?

2. Implementing event sourcing
3. The challenge of long and

long lived event stream
4. Modeling with event sourcing
5. Event subscriptions and side

effects
6. Event sourcing in a cloud

native world

Core
Values

We’re dealing with people’s money…

1. Correctness
(No surprise 🤪)

2. Explainability
Bugs happen, unexpected things will
happen in production.

“We should always be able to understand
and explain the state of the system”

Event Sourcing
“ A persistence model where all changes to a system

is stored as an immutable sequence of events”

“ A good example of a software system using event
sourcing as a persistence model is a financial
transaction system or a banking application.”

Page 1 Example

T2

Page 1 example: the account

T1

Account
Opened

100 €
Deposited

T3

50 €
Withdrawn

Events

Balance 0 Balance 100 Balance 50

State

State = FoldLeft(zero, []events)

Implementing
event sourcing

1. How would you build the core
of a modern bank?

2. Implementing event sourcing
3. The challenge of long and

long lived event stream
4. Modeling with event sourcing
5. Event subscriptions and side

effects
6. Event sourcing in a cloud

native world

T1 T2

Writing to a stream

Account
Opened

100 €
Deposited

Events

Account open
Balance 100 €

Command
Withdraw 50 €

Consistency boundary

Validate
Account state
Funds check

Project stream
into state

T3

50 €
Withdrawn

Write new
event

Competing write

T2’

60 €
Withdrawn

Write
fails

● Complete control, but you’re on your own
● Maintenance burden
● Lunar Go library (closed source)

○ Postgres as storage - well known
technology is a strength

○ Simple SQL unique constraint to
guarantee consistent writes

● Assess available products
○ Commercial
○ Open source alternatives

● Evaluate cost and complexity
● Technology and platform match

Build Buy

Implementing event sourcing

The challenge
of long and
long lived
event streams

1. How would you build the core
of a modern bank?

2. Implementing event sourcing
3. The challenge of long and

long lived event stream
4. Modeling with event sourcing
5. Event subscriptions and side

effects
6. Event sourcing in a cloud

native world

The
account
event
stream

Stats

1. 800k account streams
2. 50k+ events on some streams
3. 3+ years
4. Evolution of our understanding of

the domain, so lots of event
evolution

150 ms

What happens when loading long event streams?

Account open
Balance 900 €

Consistency boundary

Snapshotting

T11

100 €
Deposited

Command
Withdraw 50 €

Validate
Account state
Funds check

2: Project additional
events into state

T3

50 €
Withdrawn

Write new
event

T12

160 €
Withdrawn

T10

50 €
Withdrawn

Account open
Balance 900 €

Project stream
into snapshot

1: Read snapshot
into state

Account open
Balance 840 €

150 ms

The effect of snapshotting

Key
take
aways

Snapshotting

1. Absolute must-have for long event
streams

2. Independently of writing new
events

3. Evolving the state becomes a
challenge - warm-up snapshots on
version bumps

type AccountState struct {
 ID ID
 Created *time.Time
 Closed *time.Time
 Balance decimal.Decimal

 // Transactions keeps track of
 // transactions.
 // NB! This map is unbounded.
 Transactions map[ID]bool

 // Reservations keeps track of
 // reservations
 // NB! This map is unbounded.
 Reservations map[ID]Reservation
}

Unbounded State

● Beware of unbounded state in
projections

● Solve idempotency differently - move
out of the projection

Modeling the
domain with
event sourcing

1. How would you build the core
of a modern bank?

2. Implementing event sourcing
3. The challenge of long and

long lived event stream
4. Modeling with event sourcing
5. Event subscriptions and side

effects
6. Event sourcing in a cloud

native world

Transfer events

Modeling a transfer

T11

100 €
Deposited

T15

50 €
Withdrawn

T13

Funds
Reserved

T12

Transfer
Initiated

T14

Transfer
Cleared Long lived

account event
stream

Problems

1. Responsibility
2. Evolving the transfer implementation
3. Idempotency

Modeling a transfer

T11

100 €
Deposited

T15

50 €
Withdrawn

T13

Funds
Reserved

T1

Transfer
Initiated

T3

Transfer
Cleared

T4

Transfer
Posted

T2

Funds
Reserved

Long lived
account ledger
event stream

Short lived
transfer event
stream

System

Account

Command

Initiate
Transfer

User

Event sourcing 💚 DDD

Aggregate

Transfer

Aggregate

Account
Ledger

Command

Reserve
Funds

Event

Funds
Reserved

Event

Transfer
Initiated

Event

Funds
Reserved

System

Clearing

Command

Clear
Transfer

System

Transfer

Command

Capture
Funds

Event

Transaction
Posted

Event

Transfer
Cleared

Event

Transfer
Posted

Read model

Transfer
Status

System boundary

System boundary

Aggregate event stream

Key
take
aways

Modeling with event sourcing

1. Define event streams around a single
responsibility

2. Model single actions/workflows in
separate event streams

3. Support for event evolution will
eventually be required

4. Embrace DDD
a. boundaries and stream modeling
b. event naming

Event
subscriptions
and side
effects

1. How would you build the core
of a modern bank?

2. Implementing event sourcing
3. The challenge of long and

long lived event stream
4. Modeling with event sourcing
5. Event subscriptions and side

effects
6. Event sourcing in a cloud

native world

Transactional boundary Subscription guarantees

1. At-least-once
2. In order Command

Event stream

E1 E2 E3

Handlers

Action

Action

Event subscriptions

Questions

1. What about reads?
2. What about side

effects?

Use
cases

Side effects

1. Internal read models - for example
for idempotency

1. External read models - the Query
side of CQRS

2. Execute commands - inside and
outside domain

3. Publish integration events
4. Process orchestration (sagas)

Orchestrating a transfer

T11

100 €
Deposited

T15

50 €
Withdrawn

T13

Funds
Reserved

T1

Transfer
Initiated

T3

Transfer
Executed

T4

Transfer
Posted

T2

Funds
Reserved

Account ledger
event stream

Short lived
transfer event
stream

Command
Reserve

Funds

Command
Capture
Funds

Clearing
External

Produces Produces

Command
Transfer

Key
take
aways

Event subscriptions

1. Must be independent of writing new
events

2. Idempotency of actions is really
important

3. Embrace eventual consistency
4. Event replay must be supported
5. Difficult to get right - the guaranteed

ordering is hard

Event sourcing
in a cloud
native world

1. How would you build the core
of a modern bank?

2. Implementing event sourcing
3. The challenge of long and

long lived event stream
4. Modeling with event sourcing
5. Event subscriptions and side

effects
6. Event sourcing in a cloud

native world

Well, not directly 󰤇… but it helps

Event sourcing and Cloud Native
Has being Cloud Native made implementing

event sourcing easier?

✅ Mind set

✅ Tooling: Backstage, 🚀 Shuttle, K8S,
 Humio, Prometheus, Grafana

✅ Development speed

Final
take
aways

Evaluating event sourcing

1. Delivers on the promise of explainability
- but not 100%

2. Attractive model - but complexity is
higher

3. Don’t use it for everything!

