How we builiss

D¥enma

in.

Me

LUNAR

Founded 2015

“Technology company running a bank”
Live (as Lunar Way) April 2016
Banking license 2019

Live as Lunarin Q1 2020
750k customers across DK/NO/SE

Cloud Native from Day 1

Live on Kubernetes in Q1 2017

Event sourcing used since 2019

~300 application services in K8S prod
~100 services using event sourcing

N

H O'W WO u I d yo u Implementing event sourcing
build the core - Thochalengacflonganc

Modeling with event sourcing

f d 5. Event subscriptions and side
O a m O e r n effects
6. Eventsourcinginacloud
b a n k 9 native world
|

w

=

LUNAR

We’re dealing with people’s money...

1. Correctness
(No surprise)

Core

v I 2. Explainability
a u e S Bugs happen, unexpected things will

happen in production.

“We should always be able to understand
and explain the state of the system”

LUNAR

Event Sourcing

“ A persistence model where all changes to a system
Is stored as an immutable sequence of events”

Page 1 Example

sourcing as a persistence model is a financial

@ “ A good example of a software system using event
transaction system or a banking application.”

Page 1 example: the account
Events O o o

Accoun t 100€ 50 €
Opened Deposited Withdrawn
Balance 100 Balance 50

State = FoldLeft(zero, [Jevents)
LUNAR

1. How would you build the core
of a modern bank?

3. The challenge of long and
long lived event stream
Modeling with event sourcing

= . Event subscriptions and side
mpiementin
| 6

Event sourcing in a cloud

event sourcing - -

e

LUNAR

Writing to a stream

Il \: ! \:
Events | | | i
' Account 100€ : i 60 € | 50¢€
' Opened Deposited '\ ! Withdrawn : Withdrawn

\ Consistency boundary Competing write

Project stream
into state
o Validate Write new
Account state t
Accountopen Funds check even
Balance 100 €

LUNAR

Implementing event sourcing

Build Buy

e Complete control, but you’re on your own
e Maintenance burden
e LunarGo library (closed source)

o Postgres as storage - well known

technology is a strength
Simple SQL unique constraint to
guarantee consistent writes

1. How would you build the core
e c a e n ge of a modern bank?
f I d 2. Implementing event sourcing
g 4. Modeling with event sourcing
I o n I Ive d . Event subscriptions and side
effects
6. Eventsourcinginacloud
event streams

o1

LUNAR

The
account

event
stream

Stats

R

800k account streams

50k+ events on some streams
3+ years

Evolution of our understanding of
the domain, so lots of event
evolution

LUNAR

What happens when loading long event streams?

© wswosaa | >

Search Dashboards Alerts Parsers Files Settings
v| Queries. @Language Syntax @ Time Chart Widget
K8s. labels.app=/bank-account/ card.CardReserveFunds fields.attempt=/.+/ | timechart(span=12h, function=percentile(field=fields.account.aggregate.load, as=aggregate_load, percentiles=[50,90,95]))
Status:Done | Bucket Size: 12h

Automatic (Time Chart)
Speed:9.67GB/s EPS:144M Completion: 100%

866481

Results Events

style
Sucketsae: 120
© spregaeiosd 95 131222
aggregate Joad 90 936085
® sgsregae a0 191481
Torat 20297

® aggregate Josd 95 sggregae load 0 @ aggregate load 5O

Mon2e

50€
Withdrawn

Snapshotting

100 € 160 €
Deposited Withdrawn

O

50¢€
Withdrawn

7
s

Project stream
into snapshot

1
1
1
1
1
1
1
1
1
1
1
1
\

O

Account open
Balance 900 €
Consistgncy boundary

2: Project additional
events into state

1: Read snapshot .
into state Validate
Account state
Account open Funds check
Balance 840 €

‘b

Write new
event

LUNAR

The effect of snapshotting

services Search Dashboards Alerts Parsers Files Settings i Hep-

Automatic (Time Chart) v Queries + anguage Syntax] Time Chart Widget < @ usmomewe > Stop Cirl

‘ 1 k8s.labels.app=/bank-account/ card.CardReserveFunds fields.attempt=/.+/ | timechart(function=percentile(field=fields.account.aggregate.load, as=aggregate_load, percentiles=[95,99.9]))

Results Events
style Hits:1576 | Status:Running | Bucket Size : 205

o =

;lll-l.l P S

1505

2020-08-2811307-4000040200
Bucket size: 205
® sggregateJoad 999 6723

LUNAR

Snapshotting

1. Absolute must-have for long event
streams

2. Independently of writing new
events

3. Evolving the state becomes a
challenge - warm-up snapshots on
version bumps

LUNAR

type AccountState struct {
ID ID
Created *time.Time
Closed *time.Time
Balance decimal .Decimal

// Transactions keeps track of e Beware of unbounded state in
// transactions.

rojections
// NB! This map is unbounded. Rro) . .
Transactions map[ID]bool e Solve idempotency differently - move

out of the projection

// Reservations keeps track of
// reservations

// NB! This map is unbounded.
Reservations map[ID]Reservation

1. How would you build the core
of a modern bank?
Implementing event sourcing

- . The challenge of long and
O e I n g t e long lived event stream
- - . Event subscriptions and side
omain wi
6. Eventsourcinginacloud

event sourcing -

w N

o1

LUNAR

Modeling a transfer

100 € : Transfer Funds Transfer 50¢€ i ;
Deposited | Initiated Reserved Cleared Withdrawn Long lived
: | : . _ | account event
@ @ @ @ @ stream
:\ Transfer events
Problems

1. Responsibility
2. Evolving the transfer implementation
3. Idempotency

LUNAR

O

100 €
Deposited

Modeling a transfer

O O

Funds 50 €
Reserved Withdrawn

Long lived
account ledger
event stream

Short lived
transfer event
stream

o o

©O 0 O O

Transfer Funds Transfer Transfer
Initiated Reserved Cleared Posted

o o——o0 0

LUNAR

Event sourcing ¢©© DDD

System boundary

Aggregate
Account
Ledger

System
Account

ry

Aggregate

System
Transfer

System boundal

Aggregate event stream

LUNAR

System

Clearing

Modeling with event sourcing

1. Define event streams around a single
responsibility

2. Model single actions/workflows in
separate event streams

3. Support for event evolution will
eventually be required

4. Embrace DDD
a. boundaries and stream modeling

b. event naming

LUNAR

1. How would you build the core
Eve n t of a modern bank?
. Implementing event sourcing
- - . The challenge of long and
subscriptions
d - d 4. Modeling with event sourcing
a n s I e 6. Eventsourcinginacloud
effects

W N

LUNAR

Event subscriptions

Tansactionalboundary % SUbscription guarantees

1. At-least-once

Questions 2. Inorder
1. Whataboutreads? | ST
. : ! | Handlers |
2. What about side i | |
| | ! —_—
effects? . N ; Action
Event stream Action |

Side effects

1.

o

Internal read models - for example
foridempotency

External read models -the Query
side of CQRS

Execute commands - inside and
outside domain

Publish integration events
Process orchestration (sagas)

LUNAR

Orchestrating a transfer

o Produces __ — >o Produces _ —>o
7 -
e 7’

100 € e Funds L7 50 €
Deposited 7 Reserved / Withdrawn
. , | , Account ledger

/ s / é event stream

@ ' o ' @ -

=

Transfer

Q

Transfer Transfer

O

Funds

Initiated Reserved Executed Posted
Short lived : : : 5
transfer event @ @ O O
stream $

Clearing

External L U N A R

Event subscriptions

1. Must be independent of writing new
events

2. ldempotency of actions is really
important

3. Embrace eventual consistency

4, Eventreplay must be supported

5. Difficult to get right - the guaranteed
ordering is hard

LUNAR

1. How would you build the core
of a modern bank?
Implementing event sourcing
The challenge of long and

|
Event sourcin
Modeling with event sourcing
Event subscriptions and side

in a cloud e
native world

w N

e

LUNAR

Event sourcing and Cloud Native

Has being Cloud Native made implementing
event sourcing easier?

Well, not directly £... but it helps

L4 Mind set
.4 Tooling: Backstage, =" Shuttle, K8S,
Humio, Prometheus, Grafana

.4 Development speed

LUNAR

Evaluating event sourcing

1. Delivers on the promise of explainability
- but not 100%

2. Attractive model - but complexity is
higher

3. Don'tuse it for everything!

LUNAR

