
Abstract, 15 min talk
At Lunar bank we had a good problem, our customers rely on us to move quickly and provide new 
features and to do so in a highly reliable manner. To meet their needs we set out on a journey to move 
from canary deployments, where we could test new features in a safe fashion, to canary clusters. We 
envisioned a world where our production clusters were truly disposable and after 3 years we finally 
achieved that goal. In this session we will share how we did it, and how you can too.

Today any engineer at Lunar bank can fail over the entire platform in 40 minutes. By deeply integrating 
with our infrastructure provider, writing some new custom operators, and moving most state out of the 
cluster Lunar is in a position to make disaster recovery a day to day operation. Listen as Henrik shares 
the successes, key learnings, and challenges we faced along the way.

Metaslide



Bio
Henrik Høegh is a Cloud Native Co-organizer in Cloud Native Aarhus where he contributes to the 
community with event planning and talks. He works as Platform Engineer at Lunar maturing, 
developing the platform and giving support to its users. 

He is currently focused on maturing Lunars failover capabilities and onboarding new developers to the 
platform. He has been using Kubernetes since early 2016 and has done countless talks on Kubernetes 
for beginners. Before joining Lunar Henrik worked as a consultant implementing a Cloud Native edge 
computing platform for one of the largest wind turbine companies in the world.

Metaslide



PUSH IT 
TO THE LIMIT
Henrik Høegh  - Platform Engineer @lunarmoney
@HenrikHoegh

From Canary Deployments to Canary Clusters



500,000 
Customers in total

European Banking License issued 
in Denmark

Recently closed our Series D of €210m

650
Employees

€345m
Total amount raised

Series D   

15,000
Total number of Business 

Customers

Company founded in 2015

Stockholm

Oslo

Copenhagen

Aarhus

We have offices in 
these locations



APPARENTLY 
WE ARE NOW 
A UNICORN

UNICORN

Photo by mark glancy: https://www.pexels.com/photo/boston-terrier-wearing-unicorn-pet-costume-1564506/

x 2



WHO?

Co-organizer in Cloud Native Aarhus

Occasional speaker at Meetups, Conferences

Working as a consultant for more than 14 years

Hobby : Dungeon & Dragons

HENRIK RENÉ HØEGH
PLATFORM ENGINEER
@HenrikHoegh



MEETUP ALLIANCE
NORDIC



Agenda

● Our tech stack
● How we did failovers
● Key changes for speed
● Future



Our failover journey starts

- 3 years of hard work
- From monolith to microservices
- From deployment pipelines to GitOps

twitter.com/HenrikHoegh



OUR TECH STACK
NOW

GitOps Flux v1

AWS RDS database Rabbit MQ

Kubernetes

External DNS



OUR TECH STACK - HOME BREW
NOW

Shuttle Release-manager



1. GENERATION
FAILOVER



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes clusterFailover branch

Edits



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits

Federate



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits

Federate

Edits



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits

Federate

Edits



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits

Federate

Edits



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits

Edits



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits

Edits



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster

Failover branch

Edits

Edits

M
er

ge



GitOps Configuration Repository

Main branch

Users

1. GENERATION
FAILOVER

Kubernetes cluster



twitter.com/HenrikHoegh

GENERATION CHALLENGES
FIRST

A lot of merge 
complexity in 

our GitOps 
repository

New 
deployments 

will stale if 
released after 

branching

Most people 
felt 

uncomfortable 
doing a failover

Not in the 
spirit of GitOps



twitter.com/HenrikHoegh

GENERATION OBSERVATIONS
FIRST

Most edits in the 
GitOps repository 

was 
“cluster name”

Fluent Bit logs AWS-iam-
authenticator

External DNS 
annotations



2. GENERATION
FAILOVER



twitter.com/HenrikHoegh

GENERATION - TWO NEW CONTROLLERS
SECOND

Cluster identity 
controller

Routing Weight 
controller



GENERATION - CLUSTER IDENTITY
SECOND



GENERATION - ROUTING WEIGHTS
SECOND



GENERATION - ROUTING WEIGHTS
SECOND



GENERATION - ROUTING WEIGHTS
SECOND



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

$ shuttle run add_routing_weight

Federate



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

Re
le

as
e

Federate



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

$ shuttle run adjust_routing_weight

Federate



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

Re
le

as
e

Federate



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

Re
le

as
e

Federate



Routing 
Weight
Resources



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

Federate

$ shuttle run delete_routing_weight



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

Federate

Re
le

as
e



GitOps Configuration Repository

Main branch

Users

2. GENERATION
FAILOVER

Kubernetes clusterCluster-routing-controller-resources

Federate



twitter.com/HenrikHoegh

GENERATION EFFORT
SECOND

Coding two 
Kubernetes 
operators

17 failover runs 
in Dev in a 2 
month time 

period

Every iteration 
let to 

improvements



twitter.com/HenrikHoegh

GENERATION RESULTS
FIRST

Everyone in 
Squad Odyssey 

can do a failover 
in production

The failover 
operation is 

down to 5 
automated 

steps

No GitOps 
branching

From spending 
4 hours on a 

failover to 40 
minutes !



twitter.com/HenrikHoegh

GENERATION PROBLEMS
FIRST

Our Cluster Identity 
controller has to have 
“strategies” to find the 

clusterName.



twitter.com/HenrikHoegh

GOALS
FUTURE

Use dependency 
feature in Flux v2

Migrate from 
Kops to 

ClusterApi

We want to 
migrate our 
Terraform to 
Crossplane



twitter.com/HenrikHoegh

GENERATION RESULTS
FIRST

Plan Do Study Act



THANK 
YOUContacts :

LinkedIn:  linkedin.com/in/hoeghh
Twitter: twitter.com/HenrikHoegh
E-Mail:  her@lunar.app

Open source links :

Shuttle: github.com/lunarway/shuttle
Release-manager: github.com/lunarway/release-manager




