
PAVED PATHS
LEADING THE WAY
TO COMPLIANCE
CloudNativeCon+KubeCon EU 2023 - Amsterdam

Brian Nielsen (@briannielsen76) - Director of Technology
Kasper Nissen (@phennex) - Lead Platform Architect

BRIAN NIELSEN
DIRECTOR OF TECHNOLOGY

Brian is a former engineer & architect turned exec
Working as Technology Director with expertise in
architecture, data, and finance.
He has a keen interest in domain-driven design and is
committed to bridging the gap between technology
and business

@briannielsen76

KASPER BORG NISSEN
LEAD PLATFORM ARCHITECT

Cloud Native Computing Foundation Ambassador
Community lead and founder at Cloud Native Nordics
Organizer and founder at Cloud Native Aarhus
Community Advocate at Ambassador Labs
Linkerd Ambassador
Occasional speaker at Meetups, Conferences

@phennex

What to expect
1 What is Lunar?

Compliance Requirements

Ways of Working

Backstage at Lunar, why and how?

Backstage adoption

Use case: Asset Management

2

3

4

5

6

7 Next steps

WHAT IS
 ?

LUNAR
TECHNOLOGY

113
(563 overall)

3
Hubs

CPH+AAR+STO

21
Squads

+575K
Users

123K new in 2022

Talents in Tech

16#
Largest

bank in DK

Founded in

2015100+
Daily deploys

400+
Microservices

Our IT strategy is designed to fuel
business growth
Technology should accelerate our ability to scale business
opportunities

1 Domain driven design

2 Event driven design

3 Outsource based on domain distillation

4 Paved Paths engineering

Speed and control is of the
essence
Balancing speed of change with compliance

Business
Opportunities

Safety &
control

COMPLIANCE
REQUIREMENTS

DFSA “Executive Order on Management and
Control of Banks”
In Denmark it is specifically the addendum 5 IT-Strategy, IT risk policy
and IT security policy that is in play for Technology

§ 23: Asset mgmt for critical functions

§ 24: Asset Classification

§ 25: Asset Confidentiality, integrity and availability

(In Danish - sorry but you get the drift)

Why have compliance? - Trust is key
DFSA : “We are working for financial stability and confidence in
financial undertakings and markets”

WAYS OF
WORKING

Building the best product is a team sport

We believe in shared success and a
360 ownership across the business.
Building the best product is a team

sport, where you must secure all
specialised competencies and skills

to win.

We believe cross-functional teams on
a shared mission is the way to create
high engagement and performance,

and to beat competition.

GrowGrow

GrowGrow

GrowGrow

GrowGrow

GrowGrow

GrowGrow

GrowGrow

GrowGrow

GrowGrow

GrowGrow

PRODUCT DOMAINS ENGINEERING DOMAINS
Grow

GrowGrowManage

GrowGrowFlexibility

GrowGrowTransaction Banking

GrowGrowOther Services

GrowGrowCloud

GrowGrowDevelopers

GrowGrowData

GrowGrowSecurity

GrowGrowPartners

SUPPORT DOMAINS

GrowGrowPortfolio & Treasury

GrowGrowFinance

GrowGrowRisk

GrowGrowRegulatory & Compliance

GrowGrowCRM & Front Office

GrowGrowBuildings & Facility

GrowGrowHuman Resources

GrowGrowData & Analytics

GrowGrowSales & Marketing

Lunar’s application and cloud architecture
consists of +90 domains, supported by +400 microservices…

18
SQUADS

PRODUCT CENTRIC SQUADS
Focused on delivering customer value

3
SQUADS

Seamless and
compliant

deployment

CI/CD

Scale and
decouple

Fast time to
market &

reuse

Code libraries
and scaffolding

Lower
engineering
complexity

Best in class
standard

security with
easy sign-on

Self-healing
application

runtime

Unified data
governance &

DS tooling

Fast feedback
loop and safe

to fail

Explore Fast
Developer Wiki

EMPOWER
Engineers

GrowGrowCloud

GrowGrowData

GrowGrowDevelopers

GrowGrowPartners

GrowGrowSecurity

BUILDING INDUSTRY LEADING ENGINEERING PLATFORM TO
HELP ENGINEERS FOCUS ON SOLVING REAL CUSTOMER PROBLEMS

Paved
paths leads
the way

- Sane configuration defaults
- HA
- Resource limits
- Changes to production requires 4 eyed review

- Secure by default
- Least privilege
- Service enforces global branch restriction rules
- Release-manager ensures only master branch

artifacts in production environments
- Signed commits required

- Services are setup for day 2 operations
- Suite of development libraries
- Automatic dependency updates

BACKSTAGE AT
LUNAR,
WHY AND HOW?

MEET SPACY
Developer at Lunar

Awesome!
I’m ready!

CI/CD - check!

Communication
protocols..
check!

Uhh! I guess
that’s required
knowledge!

Are you kidding
me?

PROBLEM
Developers were getting overwhelmed with the amount of
systems and knowledge required to take on the required

ownership.

GOAL
Minimize the cognitive load on developers, and provide

them with clear actionable information.

Backstage to the rescue.

But first, let’s talk about shuttle

shuttle.yaml

plan: git://…/lw-shuttle-go-plan.git
vars:
 service: prometheus
 squad: odyssey
 domain: observability

 ingress: true
 db: true

 k8s:
 dev:
 env:
 log.level: debug

$ shuttle run build
$ shuttle run push
$ shuttle run generate_config
...

github.com/lunarway/shuttle

.
├── CODEOWNERS
├── Jenkinsfile
├── README.md
├── api
├── cmd
├── go.mod
├── go.sum
├── internal
├── renovate.json
└── shuttle.yaml

Anatomy of a service repository
All go service repositories looks more or less the same.

apiVersion: backstage.io/v1alpha1
kind: Component
metadata:
 name: service
 description: ..
 annotations:
 lunar.tech/domain: domain
spec:
 type: service
 owner: squad-A
 providesApis:
 - service-api

Entity
processors

Solving the needs
Empower developers to do what

they need without requiring them
to use Backstage.

Setting up a new service required a lot of manual configuration of
● Github Repository

○ Copy over files
○ Configure branch restriction

● Configure Docker Registry
● Setup release policies
● Etc.

Setting up a new service

Service generation using Backstage scaffolder

Go service with vostok

That was
almost to easy!

💖

Enable DIY
Showcase how developers can

create their own plugins.

Reconstitution

ADOPTING
BACKSTAGE

Paved paths leads the way…
Backstage Scaffolder has allowed us to lock down creation of git
repositories in Github.

Every repository is created through Backstage with sane defaults, and everything set up, and
ready to go.

What’s in the default package?
.
├── CODEOWNERS
├── Jenkinsfile
├── README.md
├── api
├── cmd
├── go.mod
├── go.sum
├── internal
├── renovate.json
└── shuttle.yaml

Github configuration;
- Branch protection on main branch
- CODEOWNERS - Approval requirement

CI pipeline with security
checks and scanning

Automatic updates of
dependencies

Service ownership, default runtime
configuration for the environments

Initial go-service configuration
Use shuttle to generate code

Configuration of external dependencies
taken care of.

Critical systems and paths

Service

dead-letter
service

Decision

Rabbit
MQ

Rabbit
MQ

Rabbit
MQ

Keep as
unacked Publish as

dead-lettered

Consume
dead-lettered
messages

Consume
messages

Handle
failed

Provides API for
backstage

Dead-lettered messages on Squad pages

Gathering insights
and surface
progress…
Tech-insights helps us surface
information on components by
comparing it against the rest of
the organization.

Providing squad-level action items and progress

Driving adoption…

Show potential

Collect feedback

Make it fit

Critical paths & systems

Inner sourcing

Reduce friction

USE-CASE:
ASSET
MANAGEMENT &
MORE

Increase
performance

Mitigating
risk

Building
customer
trust and

satisfaction.

Why asset management?

Regulator
requirements
according to

DFSA

Asset modelling overview
We are in Lunar documenting assets on many levels

Asset modelling overview
We are in Lunar documenting assets on many levels

Domain as Assets
We have currently chosen our domains as asset classification level

Lunar Backstage

Service

System

Domain

Squad Vendor

System

Employee Company
IT

Device

Owner

Asset

Internal
Software

External
Software

Hardware

grpc

System

Resource

Domain

Compone
nt

API
(e.g. OpenAPI, gRPC, API,

Avro, Dataset,

openapi

asyncapi

graphql

Types

service

website

library

Types

database

s3-bucket

cluster

Types

partOf

partOf

dependsOn

providesAPI

consumesAPI

partOf

partOf

Group User

root

team

business-unit

product-area

Types

hasMember

memberOf

ownerOf ownedBy

Asset classification
Assets are classified as either:

● Tier 1: Mission critical
● Tier 2: Highly critical
● Tier 3: Non critical

Based on the criticality classification there might
be set different requirements for the asset

Incident response

Automating controls to ensure continuous compliance

AWS config change Humio & snyk alerts

NEXT STEPS

Catalog: software asset management
Techdocs: keeping docs together with the code and dynamically updated
Scaffolder: make it easy to create new services
Catalog-graph: graphing the software catalog
Pagerduty: trigger on-call schedules
Reconstitution: resend events
Dead Letter: handle events that failed
Tech-insights: provide progress on squad and company level

What do we have today?

Event schemas and PII Data

Service A Service B

schema-registry

Data Platform

apiVersion: backstage.io/v1alpha1
kind: API
metadata:
 name: service
 description: …
relations:
 - type: apiProvidedBy
 targetRef: component:default/service
 target:
 kind: component
 name: service
spec:
 type: asyncapi
 owner: squad-maven
 definition: |

{

 "type": "record",

 "namespace":

"integrationevents.onboarding.user",

 "name": "userCreated",

 "fields": [

 { "name": "Name","type": "string" },

 { "name": "Street","type": "string" },

]

}

Data Resources and PII Data

System
Collection of entities

that cooperate to
perform some function

Resource
(e.g. SQL Database, S3

bucket, …)

Domain
(e.g. Domain models,

metrics, KPIs, business
purpose)

Component
(e.g. backend service,

data pipeline …)

API
(e.g. OpenAPI, gRPC,

API, Avro, Dataset,

openapi

asyncapi

graphql

grpc

Types

service

website

library

Types

database

s3-bucket

cluster

Types

partOf

partOf

depends
On

providesAPI

consumesAPI

partOf

partOf

Data Resources and PII Data

System
Collection of entities

that cooperate to
perform some function

Resource
(e.g. SQL Database, S3

bucket, …)

Domain
(e.g. Domain models,

metrics, KPIs, business
purpose)

Component
(e.g. backend service,

data pipeline …)

API
(e.g. OpenAPI, gRPC,

API, Avro, Dataset,

openapi

asyncapi

graphql

grpc

Types

service

website

library

Types

database

s3-bucket

cluster

Types

partOf

partOf

depends
On

providesAPI

consumesAPI

partOf

partOf

Key takeaways

● Business value perspective
○ T2M - No friction
○ Engineers can focus on creating customer value
○ Compliance through automation

● Tech perspective
○ Reducing cognitive load results in happier developers
○ Paved paths and sane defaults, ensure developers can focus on creating

customer value
○ Backstage for everyone

THANK YOU

Brian Nielsen
 @briannielsen76

Kasper Nissen
 @phennex

