
microxchg 2018

Providing Business Insight
in a Microservice World

microXchg 2018

• Started programming on the C64 and the Amiga back in 80s

• M.Sc. in Maths

• Professional software developer since 2004

• Started my career in Java

• Left Java in favour of Scala and FP

• Now primarily working in Go and Typescript

Although I miss Scala’s type system, the simplicity
of Go is often a bliss

About me

Thomas Bøgh Fangel
Web Architect @ Lunar Way

@tbfangel

Video

microXchg 2018

microxchg 2018

The question

I need to get some
numbers on our Travel

Card users with at least
one travel related goal
who have also used the
standard Visa card to

buy something in a
foreign currency!

The problem

microXchg 2018

Travel Card

DB

Transaction

DB

Goals

DB

With information spread across several services and
databases, how do you provide the required insight?

Our solution

microXchg 2018

Use existing events to build a
suitable data model for analytics

1. Sources publish events
2. KPI subscribes on events and

converts to own model
3. Tooling on top to provide

insight

KPI

Source 1

Source 2

Source 3

DB

KPI pipeline

microXchg 2018

Service A KPIEvent

Dimension

Dimension
Dimension

Fact

Fact

Fact
KPI CLI Event

Sidekick KPI CLI to bootstrap from existing data.
Same pipeline, same events, different queue

Self service model

microXchg 2018

Developers must be able to add new KPI pipelines
Feature squads own all aspects of their feature - also KPI

Procedure
1. Define facts and new dimensions
2. Generate db schema and repos
3. Implement pipelines
4. Setup event consumers
5. Implement bootstrap

Fact model and repo

microXchg 2018

type AccountBalanceChange struct {
 ID string
 UserID string
 AccountID string
 Created cdt.TimeD
 Balance decimal.Decimal
 Available decimal.Decimal
 Usable decimal.Decimal
 Currency cdg.Currency
}

$ make genfactrepo SUBP=account TYPE=AccountBalanceChange
go run ./cmd/fact_generator.go -force -schema -repo -mockrepo -repos -subp account -name AccountBalanceChange
Generating file ./pkg/db/fact/account/account_balance_change_schema.go
Generating from template fact_schema.gotmpl
Generating file ./pkg/db/fact/account/account_balance_change_repo.go
Generating from template fact_repo.gotmpl
Generating file ./pkg/db/fact/account/account_balance_change_mock_repo.go
Generating from template mock_fact_repo.gotmpl
Generating file ./pkg/db/fact/account/account_repos.go
Including type NemKontoActivity in repos init for package account
Including type AccountBalanceChange in repos init for package account
Including type Account in repos init for package account
Including type AccountCreditLimitChange in repos init for package account

Facts and dimensions are structs
Template based db generation

Pipelines

microXchg 2018

func initAccountBalanceChangePipeline(opts ...pip.PipelineOption) pipeline.Pipeline {
 options := configureAndValidateAccountOptions(opts...)
 return pipeline.NewPipe(pip.DefaultPipelineOptions()...).
 Map(mapFromBalanceUdatedEvent()).
 Then(pip.EnsureDimensions(options)).
 Then(pip.EnsureUser(options)).
 Then(pip.EnsureAccount(options)).
 Then(func(entity interface{}) error {
 fc, err := fact.AsFactContainer(entity)
 if err != nil {
 return err
 }
 return options.AccountFactRepos.AccountBalanceChangeRepo.InsertFirst(fc)
 }).
 End()
}

Event consumers

microXchg 2018

balanceConsumers := consumer.New(account.ExchangeBalance, ConsumerGroupKpi,
 consumer.WithLogger(zlog.App),
 consumer.WithRoutingKeyFromEventNaming(account.Events().AccountRoutingKeyCreator),
 consumer.Pipe(account.Events().BalanceUpdated, accountPipes.AccountBalanceChangePipe),
)

Wrapping up

microXchg 2018

If doing microservices you must
think about how to deliver answers
to cross-service questions

Business model events are very
well suited for this kind of added
functionality

Autonomous teams should also
own a feature’s KPI

Key takeaways

microXchg 2018

Thank you!
Questions?

