
microxchg 2018

To RPC or not to RPC:
Communication strategies
in a micro service world
OR

The Lunar Way to Microservice bliss

microXchg 2018

• Started programming on the C64 and the Amiga back in 80s

• M.Sc. in Maths

• Professional software developer since 2004

• Started my career in Java

• Left Java in favour of Scala and FP

• Now primarily working in Go and Typescript

Although I miss Scala’s type system, the simplicity
of Go is often a bliss

About me

Thomas Bøgh Fangel
Web Architect @ Lunar Way

@tbfangel

microxchg 2018

• Setting the Scene

• Microservices and Inter
Service Communication

• Our Road to Microservices

• Use Cases of Async
Message PassingA

G
EN

D
A

Video

microxchg 2018

microXchg 2018

The Lunar Way
platform of
Summer 2016

microxchg 2018

NemID Integration

NemID
Native iOS

and Android
apps

Bank Integration

DK Bank
Backend

Platform assessment

microxchg 2018

• Well structured REST API for
the app

The Good

• Tightly coupled data model on
the backend

• App and backend tightly coupled

• One data entity all over the place

• Big Bang deployments

• Hard to do fast experiments

• Hard to scale

The Bad

Change required!

microxchg 2018

• Scalability

• Resilience

• Autonomy

• Decoupling

• Fast experiments

• Small, independent and fast deployments

Goals

microXchg 2018

Microservices
and inter service
communication

https://pixabay.com/en/team-motivation-teamwork-together-386673/

So, what is a microservice?

microxchg 2018

– Sam Newman

Microservices are small,
autonomous services that

work together.

– Martin Fowler

…a single application as a suite of
small services, each running in its
own process and communicating

with lightweight mechanisms…

…services are built around business
capabilities and independently
deployable by fully automated

deployment machinery

Why microservices – or why not?

microxchg 2018

• Modularity

• Coherence and low coupling

• Fault tolerance

• Fast development

• Autonomy

• Independent deployment

Benefits

• Sharing data across services

• Debugging and tracing

• Orchestration

• Deployment

• Increased overall complexity

• Insight across service boundaries

Challenges

Inter service communication

microxchg 2018

• Closed communication

• Trusted/ “secure”

• High coupling (code/space/time)

• Works good when synchronous
app request involved

Synchronous req/resp

• Open ended communication (pub/sub)

• Low coupling (data only)

• “Insecure” from a dev perspective
Flow orchestration is complex

• Works bad when synchronous app
request involved

Async messages

Communication shapes coupling

microxchg 2018

Synchronous req/resp

Service A Service B

Request

Response

Temporal coupling

Spatial coupling

Behavioural coupling - Service A
commands the behaviour of Service B

Example: Signup commands user service
to CreateUser

Async messages

No spatial and temporal coupling

No behavioural coupling - Service B
determines its own behaviour based on the
behaviour of Service A

Example: Signup publishes UserApplied. User
service consumes event, creates user and
publishes UserCreated. Signup service
consumes and changes state

Service A Service B

Q
U
E
U
E

https://iansrobinson.com/2009/04/27/temporal-and-behavioural-coupling/

Event driven systems

microxchg 2018

• All changes published as events

• Events drive behaviour

• Traditional system design focus on only the state
changes - events disappear after they happen

• Event driven systems complete the picture

Service C Service D

Service A Service B

Event

Event Event

https://hackernoon.com/events-as-first-class-citizens-8633e8479493

https://hackernoon.com/events-as-first-class-citizens-8633e8479493

microXchg 2018

Our Road to
Microservices

https://pixabay.com/en/road-winding-street-bridge-1030789/

The first microservice

microxchg 2018

Backend Backend

Feed

microxchg 2018

Learning 1 Never allow microservice
A to access the data of
microservice B directly

microxchg 2018

Learning 2 Reduce the number of
new technologies

introduced in one go

http://mcfunley.com/choose-boring-technology

http://mcfunley.com/choose-boring-technology

Microservice 2, 3 and 4

microxchg 2018

Backend
Feed

Backend

Feed

Goals

Signup

Support

microxchg 2018

Learning 3 Prioritise your
deployment pipeline
and runtime platform

Microservice X, Y and Z

microxchg 2018

vs

microxchg 2018

Learning 4 Choose your
toolbox wisely

microxchg 2018

Learning 5 Insist on paying
off technical debt

Microservice N,
N+1, N+2…

microxchg 2018

Beyond
counting…

microxchg 2018

Learning 6 Be systematic!

microxchg 2018

Learning 7 DRY up your services
– factor out common

functionality into
new services

microxchg 2018

Learning 8 Appreciate the value
of publishing all
business model

changes as events

microxchg 2018

NemID

Bank
Integration

DK Bank

Native iOS
and Android

apps
Legacy API

Auth

User

Feature

Feed

Stream

Goals

Travel
Card

Signup

Social

Move
Money

Referral

Topup

Push Credit

Tracking

Appsync

User
Settings

Time

Rules

KPI

Support

NemID
Integration

PayLike
Integration

PaySafe
Integration

Insight

Locali-
zation

Split

Intercom
Sync

Promo

TC
Support

Houston
(Support)

GPS
Integration

PayLike

PaySafe

GPS

KPI
CLI

App Facing Internal Integrations

microXchg 2018

Use Cases of
Async Message

Passing

https://pixabay.com/en/message-in-a-bottle-bottle-post-1694868/

Data enrichment

microxchg 2018

AggregateSource

Enrichment 1

Enrichment 2

One source of data, multiple
enrichments

1. Source publishes event
2. Aggregate stores entity
3. Enrichments runs and publishes

event
4. Aggregate updates aggregate with

enrichment

Business insight

microxchg 2018

Business requires insight across
services

1. Sources publish events
2. KPI subscribes on events and

converts to own model
3. Tooling on top to provide insight

KPI

Source 1

Source 2

Source 3

DB

External APIs and web hooks

microxchg 2018

3rd parties require access to your
data

1. Sources publish events
2. External API subscribes on events

and converts to own model
3. 3rd parties access external API

and may register web hooks

External API

Source 1

Source 2

Source 3

DB

External 1

External 2

From pull to push

microxchg 2018

AppSync

Rails
DK

Partner

Native iOS
and Android

app DB

DK
PartnerRails

DB

Native iOS
and Android

app

App triggers a pull (3-5 requests ~ 1-2
seconds) from partner bank with a DB

transaction open

Queue

Never let an app request trigger a sync! Control
the sync process and use async events to push

data to the app on a web socket

Wrapping up

microxchg 2018

Adapt to the size of your team

Use asynchronous communication
between services… preferably

event driven

Prioritise your deployment pipeline
and runtime platform from the

start

Be systematic!

Key takeaways
if entering

microservice
land

microXchg 2018

