From Event Driven
to Event Sourcing

by
Thomas Bggh Fangel &
Emil Krog Ingerslev




Who are we?




Emil Krog Ingerslev ¥ @emilingerslev

Site reliability engineer & architect @lunarway
Works with Thomas on backend of the future
°? reliable efficient automated software
coffee geek &

Talks... a lot




Thomas Bagh Fangel ¥ @tbfangel

Architect @lunarway
Works with Emil on the backend of the future
Always looking for a better design

*® to write and talk about what we do

Talks... less










in numbers

Transcations Microservices

Employees K8S clusters




Platform

Evolution




From monolith...




Native iOS and
Android app’s

Backend

. = n
<, L
(3
mlLs
|}

PostgreSQL

Bank Integration

NemlID Integration

~

_ RIS
wramazon

N¥ webservices

DK Bank




... to event driven microservices...

microservices communication pattern

to 3rd parties daily deployments




... to event sourcing with consistency guarantees




ldentified some problems

found desired characteristics

how we implemented them




a fictive overview

not showing
message queues
databases

etc...




Service A

Service B

Let me know about
new users

Service




We built services CRUD like

Behavior:

Step 1-do changein DB
Step 2 - publish message




do changein DB

Consistency
problem




relied on broker

Consistenc ] :
y receiver in dark

problem

publisher in dark




receiver never gets event
zero-or-once delivery Consequence

actually zero-or-more!




services state drift
weird support cases @

hours of logs scrolling &
synthetic symptom fixes




Imagine some other characteristics g

“Atomic state change and message publication”
+

“At-least-once delivery”




Event sourcing as a solution

Every event IS the state change

= Atomic event generation & state change




Guaranteed

event publishing

Read stream
Got event #1
Publish event #1
Save cursor #1
continue to #2




Guaranteed

event publishing

Starting up

Read cursor #1

Read stream from > #1
Got event #2

Publish event #2

Save cursor #2




Guaranteed

atomic state change + event publishing

at least once event publishing




Service A

Service B

Let me know it all - again!

@ @ @ @ New Service

Service




Poor Man’s
Event Store

RabbitMQ

Service A Service B




Bootstrapping replay from Poor Man
the old way synthetic events




manual process
Bootstrapping availability of events

problems consistency
handling load




9 Can we do better?

“Events as first class citizens”

“Event streams with possibility of redelivery”

Bootstrap galore




Event sourcing as a solution

"Every event IS the state change”

APl on top of event stream

Events as first class citizens
with
event streams with redelivery




Event Sourcing Patterns

Bootstrap on-demand
Integration events on the outside




Integration Events are
a projection of internal events
with same characteristics

so whats the purpose? W

Less coupling
Producer «» Consumer




Producer

Finds event stream for User #1

Hydrates integration events s\
Sends events back

New Consumer

Gets request from User #1
Asks for events for User #1

Hydrates User #1 view
Responds to request




Service A

Service B

Let me know it all - again!

@ @ @ @ New Service




Service listens for events
Receives event #1

event #2 Is sent,
Receives event #3

Healing

problem




Drifting state

Consumer left in dark
Consequences

Support cases
Sync logic to fix problems




Desired characteristics @

Heal our broken state
Know if events are missing
Redelivery of missing events




"Event streams with possibility of redelivery"

Take 2 O\

o

S

"Ordered event streams with possibility of redelivery"




Revisiting the event sourcing patterns

Bootstrapping was about redelivery from scratch

Redelivery from any event




Self healing

Service listens for events
Recelves event #1

Moves cursor to #1
Receives event #3
Request events since #1
Get event #2

Moves cursor to #2

Continue on event #3




Pitfalls

NERVAUGEINE
missing events detected when new event arrives

lost last event

S consistent




Reconstitution »\
Like syncing state, but generic

Walk over all known event streams
Ask upstream service for events since "internal cursor”

Either

we receive nothing we receive events
¥ up to date Vv get up to date

-
Problem solved. Thanks event sourcing




Service A

Service B

Let me know it all - again!

@ @ @ @ New Service

Service E




deprecate existing data
add new data

modify existing data




Poor Man’s
Event Store

RabbitMQ

Service A Service B




hard coupling via events
no versioning

only additive changes
RabbitMQ coordinated migrations

Service A Service B




events detached from
producer

events cannot be updated Poor Man’s

consumers must adapt Event Store




g Evolution as an ordinary, daily thing?

"If it hurts, do it more often”




producer owns events
ability to map events to new models

controlled, step-wise migrations




Event sourcing as a solution

"Ordered, persisted event streams with easy re-
delivery"

integration events on the outside
versioning of projections
walkers for hydration




about integration events...

internal events can
be used for multiple integration event streams

move to new integration events

through a non-blocking migration




Producer Consumers

add new projection
extend consumer1
extend consumer 2
_ old projection in consumer 2
_ old projection in consumer 1
_ old projection

PRt R EFeerents
: oo




Service A

saw problems in old architecture

D @ @ @
characteéristics to eliminate problems

found solutions in event sourcing

Se q%2§>s




Things to take into account

not an off the shelf product
developing a framework is costly

introducing a new service design paradigm is hard
solid patterns, easy to improve




A look from above #®
r'.}f \

A pattern emerges

Pain ® = Normal ®

Focus on business domain
and iterating... over & over



If It Hurts, Do It More Frequently, and

Bring the Pain Forward
-Jez Humble




hurt to validate state @ check state all the time @.
bootstrapping was hurtful @ redelivery as a daily pratice &

change is cumbersome & hard & change as an enjoyable thing @




We wont lie

It's not an easy solution, but
these
characteristics & guarantees

lead to
reliable
improvable
microservices




guestions?




thanks

-» Thomas Bagh Fangel @tbfangel

Emil Krog Ingerslev @emilingerslev &




