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Who are we?




Emil Krog Ingerslev ¥ @emilingerslev

Site reliability engineer & architect @lunarway
Works with Thomas on backend of the future
°? reliable efficient automated software
coffee geek &

Talks... a lot




Thomas Bagh Fangel ¥ @tbfangel

Architect @lunarway
Works with Emil on the backend of the future
Always looking for a better design

*® to write and talk about what we do

Talks... less
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Transcations Microservices

Employees K8S clusters




Platform

Evolution




From monolith...
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... to event driven microservices...

microservices communication pattern

to 3rd parties daily deployments




... to event sourcing with consistency guarantees




ldentified some problems

found desired characteristics

how we implemented them




a fictive overview

not showing
message queues
databases

etc...




Service A

Service B

Let me know about
new users

Service




We built services CRUD like

Behavior:

Step 1-do changein DB
Step 2 - publish message




do changein DB

Consistency
problem




relied on broker

Consistenc ] :
y receiver in dark

problem

publisher in dark




receiver never gets event
zero-or-once delivery Consequence

actually zero-or-more!




services state drift
weird support cases @

hours of logs scrolling &
synthetic symptom fixes




Imagine some other characteristics g

“Atomic state change and message publication”
+

“At-least-once delivery”




Event sourcing as a solution

Every event IS the state change

= Atomic event generation & state change




Guaranteed

event publishing

Read stream
Got event #1
Publish event #1
Save cursor #1
continue to #2




Guaranteed

event publishing

Starting up

Read cursor #1

Read stream from > #1
Got event #2

Publish event #2

Save cursor #2




Guaranteed

atomic state change + event publishing

at least once event publishing




Service A

Service B

Let me know it all - again!

@ @ @ @ New Service

Service




Poor Man’s
Event Store

RabbitMQ

Service A Service B




Bootstrapping replay from Poor Man
the old way synthetic events




manual process
Bootstrapping availability of events

problems consistency
handling load




9 Can we do better?

“Events as first class citizens”

“Event streams with possibility of redelivery”

Bootstrap galore




Event sourcing as a solution

"Every event IS the state change”

APl on top of event stream

Events as first class citizens
with
event streams with redelivery




Event Sourcing Patterns

Bootstrap on-demand
Integration events on the outside




Integration Events are
a projection of internal events
with same characteristics

so whats the purpose? W

Less coupling
Producer «» Consumer




Producer

Finds event stream for User #1

Hydrates integration events s\
Sends events back

New Consumer

Gets request from User #1
Asks for events for User #1

Hydrates User #1 view
Responds to request




Service A

Service B

Let me know it all - again!

@ @ @ @ New Service




Service listens for events
Receives event #1

event #2 Is sent,
Receives event #3

Healing

problem




Drifting state

Consumer left in dark
Consequences

Support cases
Sync logic to fix problems




Desired characteristics @

Heal our broken state
Know if events are missing
Redelivery of missing events




"Event streams with possibility of redelivery"

Take 2 O\

o

S

"Ordered event streams with possibility of redelivery"




Revisiting the event sourcing patterns

Bootstrapping was about redelivery from scratch

Redelivery from any event




Self healing

Service listens for events
Recelves event #1

Moves cursor to #1
Receives event #3
Request events since #1
Get event #2

Moves cursor to #2

Continue on event #3




Pitfalls

NERVAUGEINE
missing events detected when new event arrives

lost last event

S consistent




Reconstitution »\
Like syncing state, but generic

Walk over all known event streams
Ask upstream service for events since "internal cursor”

Either

we receive nothing we receive events
¥ up to date Vv get up to date

-
Problem solved. Thanks event sourcing




Service A

Service B

Let me know it all - again!

@ @ @ @ New Service

Service E




deprecate existing data
add new data

modify existing data




Poor Man’s
Event Store

RabbitMQ

Service A Service B




hard coupling via events
no versioning

only additive changes
RabbitMQ coordinated migrations

Service A Service B




events detached from
producer

events cannot be updated Poor Man’s

consumers must adapt Event Store




g Evolution as an ordinary, daily thing?

"If it hurts, do it more often”




producer owns events
ability to map events to new models

controlled, step-wise migrations




Event sourcing as a solution

"Ordered, persisted event streams with easy re-
delivery"

integration events on the outside
versioning of projections
walkers for hydration




about integration events...

internal events can
be used for multiple integration event streams

move to new integration events

through a non-blocking migration




Producer Consumers

add new projection
extend consumer1
extend consumer 2
_ old projection in consumer 2
_ old projection in consumer 1
_ old projection

PRt R EFeerents
: oo




Service A

saw problems in old architecture

D @ @ @
characteéristics to eliminate problems

found solutions in event sourcing

Se q%2§>s




Things to take into account

not an off the shelf product
developing a framework is costly

introducing a new service design paradigm is hard
solid patterns, easy to improve




A look from above #®
r'.}f \

A pattern emerges

Pain ® = Normal ®

Focus on business domain
and iterating... over & over



If It Hurts, Do It More Frequently, and

Bring the Pain Forward
-Jez Humble




hurt to validate state @ check state all the time @.
bootstrapping was hurtful @ redelivery as a daily pratice &

change is cumbersome & hard & change as an enjoyable thing @




We wont lie

It's not an easy solution, but
these
characteristics & guarantees

lead to
reliable
improvable
microservices




guestions?




thanks

-» Thomas Bagh Fangel @tbfangel

Emil Krog Ingerslev @emilingerslev &




