
From Event Driven
to Event Sourcing

by
Thomas Bøgh Fangel &

Emil Krog Ingerslev

1

Who are we?

2 . 1

Emil Krog Ingerslev @emilingerslev

Site reliability engineer & architect @lunarway

Works with Thomas on backend of the future

❤ reliable efficient automated so�ware

coffee geek ☕

Talks... a lot

2 . 2

Thomas Bøgh Fangel @tbfangel

Architect @lunarway

Works with Emil on the backend of the future

Always looking for a better design

❤ to write and talk about what we do

Talks... less

2 . 3

2 . 4

2 . 5

in numbers

80.000+
Users

10M+
Transcations

+75
Microservices

80+
Employees

1.000M+
€ Volume

3
K8S clusters

2 . 6

Platform

Evolution

3 . 1

From monolith...

3 . 2

3 . 3

... to event driven microservices ...

75+
microservices

async messages
communication pattern

10+ integrations
to 3rd parties

50+
daily deployments

3 . 4

... to event sourcing with consistency guarantees

3 . 5

Identified some problems

found desired characteristics

how we implemented them

4 . 1

a fictive overview

not showing
message queues

databases
etc...

4 . 2

5 . 1

We built services CRUD like

Behavior:
Step 1 - do change in DB
Step 2 - publish message

5 . 2

Consistency
problem

do change in DB
service fails

event NOT published

5 . 3

Consistency
problem

relied on broker
receiver in dark

publisher in dark

5 . 4

receiver never gets event
zero-or-once delivery
actually zero-or-more!

Consequence

5 . 5

services state dri�
weird support cases �

hours of logs scrolling �
synthetic symptom fixes

5 . 6

Imagine some other characteristics �
“Atomic state change and message publication”

+
“At-least-once delivery”

5 . 7

Event sourcing as a solution

Every event IS the state change
= Atomic event generation & state change

5 . 8

Guaranteed
event publishing

Read stream
Got event #1

Publish event #1
Save cursor #1
continue to #2

crash

5 . 9

Guaranteed
event publishing

Starting up
Read cursor #1

Read stream from > #1
Got event #2

Publish event #2
Save cursor #2

5 . 10

Guaranteed

atomic state change + event publishing
at least once event publishing

5 . 11

6 . 1

6 . 2

Bootstrapping
the old way

replay from Poor Man
synthetic events

6 . 3

Bootstrapping
problems

manual process
availability of events

consistency
handling load

6 . 4

� Can we do better?

“Events as first class citizens”

+
“Event streams with possibility of redelivery”

=
Bootstrap galore

6 . 5

Event sourcing as a solution

"Every event IS the state change"

+
API on top of event stream

=
Events as first class citizens

with
event streams with redelivery

6 . 6

Event Sourcing Patterns

Bootstrap on-demand
Integration events on the outside

6 . 7

Integration Events are
a projection of internal events

with same characteristics

so whats the purpose? �
Less coupling

Producer ↔ Consumer

6 . 8

Producer

...

...
Finds event stream for User #1
Hydrates integration events �
Sends events back
...
...

New Consumer

Gets request from User #1
Asks for events for User #1

...

...

...
Hydrates User #1 view

Responds to request

6 . 9

7 . 1

Healing
problem

Service listens for events
Receives event #1

event #2 is sent, but is lost
Receives event #3

State has dri�ed

7 . 2

Dri�ing state
Consumer le� in dark
Support cases
Sync logic to fix problems

Consequences

7 . 3

Desired characteristics �
Heal our broken state

Know if events are missing
Redelivery of missing events

7 . 4

"Event streams with possibility of redelivery"

Take 2 �
"Ordered event streams with possibility of redelivery"

7 . 5

Revisiting the event sourcing patterns

Bootstrapping was about redelivery from scratch
Redelivery from any event

7 . 6

Self healing

Service listens for events
Receives event #1

Moves cursor to #1
Receives event #3

Request events since #1
Get event #2

Moves cursor to #2

Continue on event #3

7 . 7

Pitfalls

many streams
missing events detected when new event arrives

lost last event
eventually never consistent

dri�ing state

7 . 8

Reconstitution �
Like syncing state, but generic

Walk over all known event streams
Ask upstream service for events since "internal cursor"

Either
we receive nothing
✅ up to date

we receive events
✅ get up to date

Problem solved. Thanks event sourcing �
7 . 9

8 . 1

deprecate existing data
add new data

modify existing data

8 . 2

8 . 3

hard coupling via events
no versioning

only additive changes
coordinated migrations

8 . 4

events detached from
producer
events cannot be updated
consumers must adapt

8 . 5

� Evolution as an ordinary, daily thing?

"If it hurts, do it more o�en"

8 . 6

producer owns events
ability to map events to new models

controlled, step-wise migrations

8 . 7

Event sourcing as a solution

"Ordered, persisted event streams with easy re-
delivery"

➕

integration events on the outside
versioning of projections

walkers for hydration

8 . 8

about integration events...

internal events can
be used for multiple integration event streams

�
move to new integration events

through a non-blocking migration

8 . 9

Producer

add new projection �
...
...
...
...
� old projection

Consumers

...
extend consumer 1
extend consumer 2

� old projection in consumer 2
� old projection in consumer 1

...

mutual agreements
strict coordination

8 . 10

saw problems in old architecture

characteristics to eliminate problems

found solutions in event sourcing

9 . 1

Things to take into account

not an off the shelf product
developing a framework is costly

introducing a new service design paradigm is hard
solid patterns, easy to improve

9 . 2

A look from above �
A pattern emerges

Pain � ➡ Normal �
Focus on business domain
and iterating... over & over

9 . 3

If It Hurts, Do It More Frequently, and
Bring the Pain Forward

- Jez Humble

9 . 4

hurt to validate state �
bootstrapping was hurtful �
change is cumbersome & hard

check state all the time �
redelivery as a daily pratice �

change as an enjoyable thing �

9 . 5

We wont lie

It's not an easy solution, but
these

characteristics & guarantees
lead to
reliable

improvable
microservices

9 . 6

questions? �

10 . 1

thanks�
� Thomas Bøgh Fangel @tbfangel

Emil Krog Ingerslev @emilingerslev �

10 . 2

